Ceramic Processing Research Efficiency enhancement of the organic light-emitting diodes by oxygen plasma treatment of the ITO substrate
نویسندگان
چکیده
Oxygen plasma has been treated on the surface of indium-tin-oxide (ITO) to improve the efficiency of the organic lightemitting diodes (OLEDs) device. The plasma treatment was expected to inject the holes effectively due to the control of an ITO work-function and the reduction of surface roughness. To optimize the treatment condition, a surface resistance and morphology of the ITO surface were investigated. The effect on the electrical properties of the OLEDs was evaluated as a function of oxygen plasma powers (0, 200, 250, 300, and 450 W). The electrical properties of the devices were measured in a device structure of ITO/TPD/Alq3/BCP/LiF/Al. It was found the plasma treatment of the ITO surface affects on the efficiency of the device. The efficiency of the device was optimized at the plasma power of 250 W and decreased at higher power than 250 W. The maximum values of luminance, luminous power efficiency, and external quantum efficiency of the plasma treated devices increase by 1.4 times, 1.4 times, and 1.2 times, respectively, compared to those of the non-treated ones.
منابع مشابه
Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملSub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography
We demonstrate fabrication of structurally regular, nanoscale organic light-emitting diodes ~OLEDs! using room temperature imprint lithography ~RTIL!. An insulating polymer layer spin-coated onto indium-tin oxide ~ITO! glass is patterned by RTIL, followed by etching with an oxygen plasma to define the light-emitting area for the fabrication of OLEDs with 80 nm linewidth. The process of etching ...
متن کاملEfficient waveguide mode extraction in white organic light emitting diodes using ITO-anodes with integrated MgF₂-columns.
We report a simple approach to enhance the out-coupling efficiency in white organic light emitting diodes (WOLEDs). By incorporating MgF₂-columns into the ITO-anode and optimizing of their geometry, an overall efficiency enhancement of up to 38% is achieved. In addition, the structuring of the anode does not lead to a change in the electrical behaviour of the devices. As evidenced by goniometri...
متن کامل47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes with Ultra-thin Inorganic Buffer Layer on Indium Tin Oxide
ITO capped with a variety of ultra-thin metal layers such as platinum, manganese, nickel, gold, lead, magnesium, and nonmetal layer such as, carbon, gallium, silicon, has been used as hole-injecting anode in organic light-emitting diodes consisting of CuPc/TPD/Alq3. Enhancement in hole injection but not current nor power efficiencies have been obtained in devices with metalcapped ITO, regardles...
متن کاملسنتز Alq3و تاثیر غلظت آن بر عملکرد دیودهای نورگسیل آلی با دو ساختار مخلوطی تک لایه و ساختار چند لایه
In this article, organic light emitting diode with the two structures of ITO / PEDOT: PSS /PVK/Alq3/PBD/Al and ITO/PEDOT: PSS/PVK: Alq3: PBD/Alwith different concentrations were fabricated. The effects of concentration of Alq3 complex on the characteristics of diodes, which were made, were studied. Layers with the same weight percentages PVK, PBD and different wt. %Alq3 by spin coating on PEDOT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012